

E. Keil	Author	
	E.	Keil

August 29, 1968

Date

Category	0106
	2.040

Section

Page			
1	of	3	
Serial			

TM-31

Subject

SPACE CHARGE LIMIT FOR A NEUTRALIZED BEAM

Following the notation of Laslett, * we have in a beam with neutralization η for the electric forces

$$K_{E} = -\frac{C}{B\beta^{2}} \left(1 + \frac{\epsilon_{1}b(a+b)}{h^{2}} \right) (1-\eta),$$

for the dc magnetic forces

$$K_{M} = C \left(1 - \frac{\epsilon_2 b (a+b)}{g^2}\right)$$

for the ac magnetic forces

$$K_{S} = \left(\frac{1}{B} - 1\right) \left(1 + \frac{\epsilon_{1}b(a+b)}{h^{2}}\right)$$

where C is an abbreviation for

$$C = \frac{2}{\pi} \frac{Nr_pR}{\gamma b (a+b)} .$$

The shift in betatron frequency $\nu_{_{\mathbf{V}}}$ is given by

$$\Delta (v_y^2) = K_E + K_M + K_S.$$

Rearranging terms leads to the following expression for the space charge ν shift

^{*}L. J. Laslett, On Intensity Limitations by Transverse Space Charge Efforts in Circular Particle Accelerators, BNL-7534, p. 324 (1963).

2040

$$\Delta \nu = \frac{\operatorname{Nr} R}{\pi \gamma \nu} \left\{ \frac{\epsilon_1}{h^2} \left[1 + \frac{1}{B\beta^2} \left(\gamma^{-2} - \eta \right) \right] + \frac{\epsilon_2}{g^2} + \frac{1}{B\beta^2} \frac{(\gamma^{-2} - \eta)}{b(a+b)} \right\}.$$

This formula agrees with Laslett's for $\eta = 0$, and with the ISR design study (AR/Int. SG/64-9) for B = 1, the unbunched beam case, in the limit y >> 1. In this limit which is the only one of importance for proton storage rings, we find:

$$\Delta \nu = \frac{\operatorname{Nr}_{p} R}{\pi \gamma \nu} \left\{ \left(\frac{\epsilon_{1}}{h^{2}} + \frac{\epsilon_{2}}{g^{2}} \right) - \eta \left(\frac{\epsilon_{1}}{h^{2}} + \frac{1}{b(a+b)} \right) \right\}.$$

One may note that compensation of space charge forces by neutralization is not possible since $\epsilon_2/g^2 < 1/(b(a+b))$ in all practical cases. Numerical estimate for η = 1, a fully neutralized beam: N = 10^{15} , R = 333 m, $\gamma = 100$, $\nu = 18$, h = 12.5 mm, g = 12.5 mm, a = 6.7 mm, b = 4.5 mm, ϵ_1 = 0.2, and ϵ_2 = 0.42. a and b are circumferential averages assuming β = 20 m and E_{H} = 2.2 π μrad m,

$$E_{v}$$
 = 1.0 π μ rad m .

We find

$$\Delta v = 0.885 (0.232 - 2.34 \eta).$$

Here we assumed that magnets are only present over half the circumference and consequently took one half of the ϵ_2 term. Hence

for
$$\eta = 0$$
 $\Delta \nu = 0.205$ for $\eta = 1$ $\Delta \nu = -1.87$

Conclusions:

- 1) The unneutralized ν shift is close to the figure given in FN-168.
- 2) The neutralized ν shift is not tolerable, hence deneutralization is essential in the storage rings.